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ABSTRACT: Eyewall replacement cycles (ERCs) in tropical cyclones (TCs) are generally associated with rapid changes
in TC wind intensity and broadening of the TC wind field, both of which can create unique forecasting challenges. As part
of the NOAA Joint Hurricane Testbed Project, a new model was developed to provide operational probabilistic guidance
on ERC onset. The model is based on the time evolution of TC wind intensity and passive satellite microwave imagery and
is named “M-PERC” for Microwave-Based Probability of Eyewall Replacement Cycle. The model was initially developed
in the Atlantic basin but is found to be globally applicable and skillful. The development of M-PERC and its performance
characteristics are described here, as well as a new intensity prediction model that extends previous work. Application of
these models is expected to contribute to a reduction of TC intensity forecast error.
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1. Introduction

The phenomenon of eyewall replacement cycles (ERCs) in
tropical cyclones (TCs), in which a secondary outer eyewall
forms and eventually replaces the original inner eyewall, is
well documented (e.g., Wang et al. 2019; Zhu and Yu 2019,
and references therein). ERCs are not just an academic curi-
osity though, as they generally cause rapid fluctuations in in-
tensity (i.e., rotational wind speed) and a rapid broadening of
the TC wind field (Sitkowski et al. 2011, 2012; Kossin and
Sitkowski 2012; Rozoff et al. 2012). The former introduces
substantial challenges to intensity forecasting and the latter
can quickly increase the risk of other TC hazards such as the
extent of wind damage and coastal storm surge. One of the
challenges of forecasting during an ERC is that they often oc-
cur in an environment favorable for TC intensification but
usually cause transient and sometimes rapid weakening,
which often results in large intensity forecast errors (Kossin
and DeMaria 2016). Providing forecasters with information
on if and when an ERC begins has the potential to lower
these errors.

There is a model presently in operations at the U.S. National
Hurricane Center (NHC), called the Probability of Eyewall
Replacement Cycle (PERC) model, that provides probability-
of-ERC forecasts out to 48-h lead time in the Atlantic basin
(Kossin and Sitkowski 2009, hereafter KS09). The PERC model
is based on real-time present and forecasted environmental

conditions as well as predictors derived from geostationary satel-
lite infrared sensors. The satellite-based predictors are designed
to provide some information about the cloud structure around
the TC center and in particular whether a secondary ring of con-
vective clouds may be developing that signals ERC onset. Unfor-
tunately though, infrared sensors do not see through upper-level
cirrus clouds well, and TCs typically have a thick cirrus canopy
over them that obscures their underlying convective cloud struc-
tures in the infrared part of the spectrum. On the other hand, cir-
rus clouds are essentially transparent to microwave sensors,
which makes them well suited for identifying the convective
cloud structures of TCs (e.g., Wilheit et al. 1976). The caveat is
that microwave sensors generally reside on board low-Earth-
orbiting satellites, which cannot provide the same uniformly
timed data that geostationary satellites provide, and they suffer
from temporal and spatial data gaps that can be large, particu-
larly in the tropics. Still, the microwave data can be used in an
operational setting with the understanding that new data may
not always be available in time for every 6-hourly operational
forecast cycle.

Here we introduce a new model that uses satellite micro-
wave data to produce a probability of ERC onset in tropical
cyclones. The model is called the Microwave-Based Probabil-
ity of Eyewall Replacement Cycle (M-PERC) model, and it is
designed to capture the formation of an outer ring of convec-
tion (a secondary eyewall) and its subsequent radial contrac-
tion toward the primary eyewall.

2. Model development

The M-PERC model utilizes output from the Automated
Rotational Center Hurricane Eye Retrieval (ARCHER) al-
gorithm (Wimmers and Velden 2010, 2016). The ARCHER
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algorithm was primarily designed to locate the center of a TC
by identifying convective rings and spirals and brightness tem-
perature gradients in 85–92-GHz passive microwave imagery.
In TCs with an eye (and thus an eyewall), the algorithm pro-
duces a “ring score,” which measures the best fit of the gra-
dients of the eyewall to the shape of a circle. It essentially
identifies ring-like convective features, and scores them by
how circularly symmetric they are. For the present application
of identifying secondary outer eyewalls, the ARCHER ring
scores were calculated every 6 km along a radial extending
outward from TC center to 200 km, and the resulting radial
profile of ring scores was interrogated for secondary maxima.

M-PERC is a statistical model based on logistic regression,
which provides a probability of an outcome in a binary classi-
fication event based on some set of scalar-valued predictors.
In this case, the binary classification of interest is whether or
not ERC onset is occurring. The occurrence of ERC onset
events was determined similarly to KS09 (section 2), through
visual inspection of microwave imagery, radar imagery, and
aircraft data. KS09 considered secondary eyewall formation
(SEF) as a logical antecedent to ERC onset, with the under-
standing that SEF can occur without leading to an ERC. SEF
was identified in the microwave imagery by the appearance of
an outer ring of convection that is clearly separated from the
primary eyewall convective ring, and forms at least 75% of a
complete circle. Identifying SEF from land-based or airborne
radar imagery was performed similarly, while identifying SEF
from aircraft flight-level tangential wind profiles was based on
identification of a persistent secondary maximum outside of
the primary eyewall. Whereas KS09 considered all SEF events
regardless of whether they led to an ERC event, here we only
consider cases of SEF that lead to an ERC, and we distinguish
this by replacing “SEF” with “ERC onset.”

The model was developed using 1787 profiles from 47 Atlantic
TCs over the period 1999–2011. Within this period, there were
84 ERC onset events.

To derive scalar-valued regression predictors from the
ARCHER ring-score profiles, principal component analysis
(PCA) was applied to the set of 1787 profiles to produce a set
of loading patterns/profiles [also known as empirical orthogonal
functions (EOFs)] and the principal components (or weighting
coefficients) were then used as potential predictors. The ring-
score profiles were normalized at each radius prior to PCA so
that ring-score variability is more constant between the primary
eyewall region, where the variability tends to be large and con-
centrated, and the regions outside where variability is generally
smaller and less radially confined. The outer region is where
secondary eyewalls can form over a broad range of distance
from TC center.

The first three leading loading profiles (EOFs) of the PCA
are shown in Fig. 1, which demonstrates the ability of the
EOFs to represent circular convective cloud features in the typi-
cal region of the primary (inner) eyewall as well as the regions
where secondary (outer) eyewalls typically form (Sitkowski et al.
2011).

After the PCA, the scalar-valued weights on the EOFs (i.e.,
the PCs) were added to a set of potential predictors for the lo-
gistic regression model. In addition to the formation of a

secondary convective ring, ERCs are generally associated
with a subsequent radial contraction of the ring. To capture
this process, the change in the PCs over the previous 6, 12, 18,
and 24 h were also added to the set of potential predictors. Fi-
nally, ERCs are well correlated with intensity and intensity
change, and the maximum wind speed and the change in wind
speed over the previous 6, 12, 18, and 24 h were added to the
set of predictor candidates. More intense TCs are more likely
to undergo an ERC (e.g., KS09), and ERCs usually form dur-
ing intensification. A backward-stepwise regression procedure
was applied to the large set of predictor candidates to select
the most useful predictors, and the final M-PERC model uses
the 18 selected predictors shown in Table 1 to produce a prob-
ability of ERC onset.

To better separate the effects of the satellite microwave-
based predictors (as represented by the PCs) and the TC
intensity-based (i.e., Vmax-based) predictors, a second logistic
regression model was formed using only the intensity-based
predictors shown in Table 1. The M-PERC output displays
the probability from both the full model based on the 18 pre-
dictors and the model based only on the three intensity-based
predictors. This provides information on whether the convec-
tive cloud presentation, as represented by the evolution of the
PCs, is more or less likely to represent an ERC onset event
than the intensity and intensity changes alone would have sug-
gested. The reduced three-predictor model can be considered
as a representation of ERC onset probability climatology as
defined solely by intensity and intensity evolution, and pro-
vides a baseline for comparison with the full model.

The M-PERC model was designed for operational use and
incorporates real-time current and previous intensity (opera-
tional or “working” best track) estimates. Microwave data

FIG. 1. First three leading loading profiles based on PCA of a set
of 1787 ARCHER ring-score profiles. The profiles were normal-
ized prior to PCA by removing the mean of the large set of profiles
and dividing by their standard deviation at each radius. Higher-
order EOFs have progressively greater radial variation and are not
shown here only to maintain the legibility of the figure. The per-
cent variance explained by the first three EOFs is shown in the leg-
end. The first nine EOFs combined explain 90% of the variance.

WEATHER AND FORECAS T ING VOLUME 381406

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 01:45 PM UTC



from polar-orbiting satellites are available regularly, but satel-
lite data swaths that capture an adequate portion of a travel-
ing TC become available more irregularly. During the life of
a TC, M-PERC is designed to update whenever a new micro-
wave pass provides adequate coverage to provide an ARCHER
ring-score profile. When a new microwave pass becomes avail-
able, the predictors are calculated and interpolated backward in
time to 1-hourly in UTC time. This way the M-PERC output is
available for every hour during the lifetime of a TC and will al-
ways fall on a synoptic or forecast cycle time. Because of the
rarity of ERC prior to a TC reaching 33 m s21 (hurricane inten-
sity), M-PERC provides zero probability until a TC reaches
hurricane intensity. A full 24 h of previous data is required to
provide a probability at any forecast time (because of predictor
PC3-24 in Table 1), but this can only affect M-PERC if a TC
reaches hurricane strength in less than 24 h from genesis, which
is unlikely.

The M-PERC model was developed using data from Atlantic
storms and was originally intended to be applied to that basin
alone, but during routine operational testing, it was found to
perform well in every TC basin. This suggests that the micro-
wave evolution of storms shares some common behaviors
among the regions, and the principal component predictors are
not highly sensitive to the known differences in average storm
size among the basins (e.g., Chavas et al. 2016), perhaps because
of the smoothed nature of the loading patterns that emerge
from PCA. It may be worthwhile to develop M-PERC analogs
in other basins, and these may be expected to perform better
in their respective basins. The following section discusses
the Atlantic-based model performance in several basins. As
noted above, the model is routinely applied in real time to all
the TC-producing ocean basins. Here we just look at exam-
ples from the North Atlantic and eastern and western North
Pacific.

3. Estimating model performance

Objectively quantifying operational M-PERC model skill is
challenging due to the somewhat subjective nature of what
comprises ERC onset (and the details of its subsequent evolu-
tion). Deciding whether an ERC occurred in real time}often
with limited microwave satellite passes, land-based radar, or
aircraft penetrations that capture the TC core region}is usu-
ally performed subjectively “on-the-fly” by forecasters, and
even determining ERC onset in postanalysis is at least partly
subjective. At times, a forecaster may explicitly mention ERC
onset in a forecast discussion, and these can be used to mea-
sure model performance, but even in these cases, determining
the actual time of ERC onset within the 6-hourly forecast cy-
cle is imprecise. With this understanding that measuring skill
objectively and exactly is not a realistic expectation (as it
could be, for example, for a track or intensity forecast model),
here we provide some estimates of M-PERC model perfor-
mance using the Brier skill score (Brier 1950) and less quanti-
tatively via a case study.

As noted above, the M-PERC model runs in real time and
consequently the TC wind intensity information used as input
comprises estimates known as working best-track data. These
intensity estimates are based on information available during
the time of the operational forecast cycle, and they are often
updated after the fact to include other information that may
have become available. The postanalysis estimates also benefit
from expert judgement of the forecasters and this ultimately
leads to the final best-track data, which represents the most ac-
curate intensity estimates. The Brier skill scores presented
here may be affected by intensity estimation errors and are
likely to present a conservative skill assessment of the model.

We begin with independent testing of the M-PERC model
on North Atlantic TCs. The Brier skill scores computed here
use a climatological probability of 13% based on the 1999–2011
Atlantic training data (cf. KS09). Over the independent testing
period 2012–20, we have 48 ERC events in 24 Atlantic hurri-
canes, resulting in a Brier skill score of 35% for the full M-PERC
model compared to 27% for the model using only intensity-based
predictors. The difference between the skill of the intensity-based
model and the full model demonstrates the contribution of
the satellite data, which increases skill by about 30% (from
27% to 35%).

In the eastern North Pacific, we have a more limited sample
of 23 ERC events in 14 storms over the period 2017–21.
Within this sample, the climatological probability of ERC on-
set is 11%, which is slightly lower than the Atlantic climatol-
ogy of 13%. Applying the model in this basin gives Brier skill
scores of 41% and 33% for the full model and intensity-based
model, respectively. Here the addition of the satellite data to
the intensity data increases skill by about 24%.

Our present samples in the remaining basins are too small to
perform robust skill assessments, but with an understanding of
this caveat we formed a sample in the western North Pacific
during the year 2020. The climatological value from this small
sample is 26%, which suggests that ERC onset is generally
more likely in this basin (compared with 13% and 11% in the
Atlantic and eastern North Pacific, respectively). Using this

TABLE 1. List of M-PERC predictors, as selected by a
backward-stepping procedure. The PC-based predictors represent
the microwave-based contribution to the model, and the Vmax-based
predictors represent the intensity-based contributions.

Predictor Description

PC3 PC 3
PC5 PC 5
PC8 PC 8
PC1-12 12-h change in PC 1
PC2-06 6-h change in PC 2
PC2-18 18-h change in PC 2
PC3-06 6-h change in PC 3
PC3-12 12-h change in PC 3
PC3-18 18-h change in PC 3
PC3-24 24-h change in PC 3
PC4-18 18-h change in PC 4
PC5-18 18-h change in PC 5
PC7-24 24-h change in PC 7
PC9-12 12-h change in PC 9
PC9-24 24-h change in PC 9
Vmax Current wind intensity
Vmax-12 12-h change in Vmax

Vmax-18 18-h change in Vmax
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value, the Brier skill scores for the full M-PERC model and the
intensity-based model are 31% and 20%, respectively.

Another way to identify the contribution of the satellite
data to the M-PERC model is to use the intensity-based-only
model output as the climatology instead of fixed values. When
we follow this procedure in the North Atlantic independent
testing sample, the Brier skill score is 11%, which again indi-
cates that the satellite data measurably increases model skill.
Following this procedure in the eastern and western North
Pacific, the Brier skill scores are 13% in both basins.

For our case study, we use 2022 North Atlantic Hurricane Ian
(Bucci et al. 2023). The operational output of the M-PERC
model displays three panels that evolve in time (Fig. 2). The
microwave ring-score profiles for each time are shown as a stan-
dard Hovmöller diagram with time increasing downward. The
M-PERC probabilities of ERC onset for each time are displayed
with the simplified model probabilities that are based only on in-
tensity and intensity change metrics (i.e., with no satellite infor-
mation). The intensity evolution is shown using operational or
working best track from the National Hurricane Center. Anno-
tated arrows and text show the microwave response to the com-
plete ERC observed in Hurricane Ian.

The formation of a nascent secondary eyewall and the asso-
ciated moat feature between the primary and secondary eye-
walls occurs during 26 September. A more detailed discussion
of these features is found in KS09. The subsequent symmetri-
zation, convective intensification, and contraction of the sec-
ondary eyewall is observed during 27 September, and the
ERC completes on 28 September. ERC completion is defined
here as in Kossin and Sitkowski (2012): when there is no lon-
ger an observed inner local wind maximum. M-PERC proba-
bilities of ERC onset remain mostly constant and near zero
until around 0600 UTC on 27 September and increase rapidly
to about 60% in the next 6 h. After this time, the lack of sym-
metric convective features outside of the contracting second-
ary eyewall drives the probabilities down to near zero again.
This same lack of convective features also keeps the M-PERC
probabilities below the probabilities based solely on intensity.
The operational best track intensity evolution demonstrates the
well-known effects of an ERC on intensity (e.g., Willoughby et al.
1982; Sitkowski et al. 2011; Kossin and DeMaria 2016). As the
secondary eyewall contracts, the intensification rate decreases
abruptly, causing an inflection point. In the case of Hurricane
Ian, this decrease was large enough to result in a transition from
a period of intensification to a short period of weakening and a
longer period of steady state. After this, a period of rapid intensi-
fication follows as the new (and much larger) primary eyewall
intensifies.

M-PERC model output is available in real time for tropical
cyclones in all basins at the URL http://tropic.ssec.wisc.edu/
real-time/archerOnline/web/index_erc.shtml. An archive of
M-PERC output that can be used to consider other case stud-
ies is also found at the link.

4. Intensity evolution climatology during ERCs

The M-PERC model provides a probability that an ERC is
underway. A logical next question for a forecaster is how best

to adjust the available intensity forecast guidance to account
for this. As described in Kossin and DeMaria (2016) and
noted above, one of the major challenges of forecasting dur-
ing an ERC is that they generally occur in an environment fa-
vorable for continued TC intensification, but usually cause a
transient decrease in intensification rate and, in many cases, a
decrease in intensity. An important tool for forecasting TC
intensity change in the Atlantic is the Statistical Hurricane
Intensity Prediction Scheme (SHIPS). Because SHIPS pro-
vides intensity change forecasts based primarily on a hurri-
cane’s ambient environmental conditions, SHIPS errors can
be large during ERCs (Kossin and DeMaria 2016). At high
enough spatial resolutions, numerical models can simulate
ERCs that cause transient intensification rate changes (e.g.,
Nolan et al. 2013; Molinari et al. 2019), but in an operational
setting, this is not of much practical use. Within a 6-h forecast
cycle, the timing of the simulated ERC would need to coin-
cide within an hour or two of the observed ERC, which is not
a realistic expectation. If the timing of the simulated ERC
does not coincide very closely with the actual ERC, the simu-
lated intensity guidance is likely to introduce greater errors
than if an ERC was not simulated at all. This lack of effective
statistical and numerical intensity guidance during ERCs is
the motivation for this section, which introduces an extended
version of the ERC intensity-change model described in Kossin
and DeMaria (2016).

Kossin and DeMaria (2016) formed a model based on ERC
intensity climatology that could be used as a temporary re-
placement for SHIPS, similar to the application of the “decay-
SHIPS” (D-SHIPS) model while storms are over land (Kaplan
and DeMaria 1995; DeMaria et al. 2005). They based their cli-
matology on 19 Atlantic ERC events. Given the small sample,
they did not stratify the events by intensity at ERC onset, but it
was understood that this was not optimal. The motivation for
such a stratification stems from the observation that the de-
crease in intensification rate associated with ERCs is a function
of intensity at ERC onset, with larger intensification rate de-
creases in stronger storms (Kossin 2015, his Fig. 3). In fact,
Kossin (2015) showed that ERCs that occur during the earlier
weaker part of the TC lifetime can sometimes coincide with
continued, albeit reduced, intensification. Alternatively, ERCs
that occur near the lifetime peak intensity of the TC almost al-
ways coincide with a change in sign of the intensification rate
(i.e., weakening intensity).

Here we exploit our larger sample of ERC events to form
three separate intensity-change climatologies based on Saffir–
Simpson category at the time of ERC onset. These are sum-
marized in Fig. 3. The climatological time evolution is based
on the observed inflection point of the intensification rate rel-
ative to the observed onset of an ERC event. The inflection
point was identified using HURDAT2 best-track intensity
data (Landsea and Franklin 2013). As seen in Fig. 3, ERC
events in all hurricanes, regardless of intensity, coincide with
a mean decrease in intensification rate, but the decrease be-
comes substantially greater with higher Saffir–Simpson cate-
gory. Weaker [category 1–2; 64–95 kt (1 kt ’ 0.51 m s21)]
hurricanes coincide with a transition from intensifying to
roughly steady state and, in some cases, continued but reduced
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FIG. 2. Operational M-PERCmodel output during North Atlantic Hurricane Ian (2022). (left) AHovmöller
diagram of ARCHER microwave ring score profiles. Time (displayed as UTC month/day hour:minute)
increases downward, and radius indicates distance (km) from storm center. (center) The probability of ERC
onset based only on intensity and intensity change (open circles) and based on the full M-PERC model
(asterisks), which also incorporates the microwave-based predictors. (right) The operational best track esti-
mates of intensity (kt).
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intensification. Category 3–4 (96–136 kt) hurricanes exhibit a
larger reduction in intensification rate and generally experience
a transient weakening of about 5 kt (6 h)21. Category 5 (137 kt
and higher) hurricanes exhibit the most dramatic change from an
intensification rate of about110 kt (6 h)21 just prior to ERC on-
set to an eventual weakening of about 10 kt (6 h)21.

On average, the first signs of ERC onset occur, respectively,
about 7, 10, and 15 h prior to the intensification rate inflection
point in category 1–2, 3–4, and 5 hurricanes (points on the

horizontal bars in Fig. 3). On average, the ERC has completed,
respectively, about 17, 19, and 19 h after the intensification rate
inflection point in category 1–2, 3–4, and 5 hurricanes. As noted
above, ERC completion is defined here as in Kossin and
Sitkowski (2012): when there is no longer an observed inner
local wind maximum.

Here we summarize and simplify the intensity-change cli-
matology in a way that may be used in an operational fore-
casting setting:

1) The behavior of the M-PERC model suggests ERC onset is
occurring. This would generally be based on a persistent in-
crease in probability, and signs of secondary eyewall forma-
tion and contraction in the M-PERC Hovmöller diagram.
Forecaster confidence in secondary eyewall formation
may also depend on other lines of evidence (e.g., aircraft-
or ground-based radar, aircraft flight-level wind data, the
environmental-based PERC model, etc.)

2) If confidence is high enough, the intensity forecast based
on SHIPS and other numerical guidance can be temporar-
ily modified.

(i) If the current intensity is category 1–2, the climatol-
ogy suggests reducing the intensification rate to
about zero over the next 6–12 h and holding inten-
sity steady for about 18 h after that.

(ii) If the current intensity is category 3–4, the clima-
tology suggests reducing the intensification rate to
about 25 kt (6 h)21 over the next 12 h and then in-
creasing the rate to about 23 kt (6 h)21 over the next
18 h.

(iii) If the current intensity is category 5, the climatology
suggests reducing the intensification rate to about
28 kt (6 h)21 over the next 15 h and then increasing
the rate to about 23 kt (6 h)21 over the next 18 h.

5. Summary

Here we introduced a new model that provides a real-time
probability of ERC onset. The model output is globally oper-
ationally available online and is based on a suite of predictors
used as input to a logistic regression model. A subset of the
predictors is based only on operational intensity and past
intensity change estimates, and another subset is based on
real-time satellite microwave imagery. The microwave-based
predictors are based on the loading functions of a principal
component analysis of microwave ring-score profiles.

The model output can be used to provide predictive infor-
mation regarding the potential fluctuations of intensity that
may occur during an ERC. An additional model is introduced
that can help to quantify these potential changes in intensity.
This model extends the model introduced by Kossin and
DeMaria (2016). The operational application of these two
models is expected to contribute to the broader goal of de-
creasing operational intensity estimates.

Acknowledgments. This work was funded under Federal
Grant Award NA19OAR4590132, “Upgrades to the M-PERC
and PERC Models to Improve Short Term Tropical Cyclone

FIG. 3. Climatology of the evolution of (top) intensity and
(bottom) intensity change during Atlantic hurricane ERC events.
The climatologies are separated by Saffir–Simpson category. The
number of events that the climatologies are based on is shown in
parentheses in the legend. Boxplots show the interquartile range,
the open circles show the median, and the whiskers show the 99%
range. Superimposed on the box-and-whisker plots are lines con-
necting the mean values. The horizontal bars represent the onset
and completion times of the ERC events relative to the intensity
change inflection point. The dots show the means, and the error
bars show61 standard deviation.
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